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In a previous work, we investigated a two-dimensional lattice-fluid model, displaying some waterlike ther-
modynamic anomalies. The model, defined on a triangular lattice, is now extended to aqueous solutions with
apolar species. Water molecules are of the “Mercedes Benz” type, i.e., they possess aD3 sequilateral triangled
symmetry, with three equivalent bonding arms. Bond formation depends both on orientation and local density.
The insertion of inert molecules displays typical signatures of hydrophobic hydration: large positive transfer
free energy, large negative transfer entropysat low temperatured, strong temperature dependence of the transfer
enthalpy and entropy, i.e., largespositived transfer heat capacity. Model properties are derived by a generalized
first order approximation on a triangle cluster.
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I. INTRODUCTION

The term hydrophobicityf1g refers to peculiar thermody-
namic properties of the transfer process of an apolar solute
into water. In such a process, one generally observes large
positive transfer free energy, large negative transfer entropy
sat room temperatured, and strong temperature dependence of
the transfer enthalpy and entropy, i.e., largespositived trans-
fer heat capacity. Such anomalous behavior seems to play a
central role for relevant phenomena taking place in aqueous
solutions, such as folding of macromolecules and proteins,
and formation of micelles and membranesf2g. For example,
bio-polymers such as proteins contain a significant fraction
of apolar chemical groups, and it is well established that the
effective attraction between apolar groups, due to hydropho-
bicity, gives an important contribution both to the folding
process and to stabilization of the folded protein.

Despite several decades of research, the theory of the hy-
drophobic effect is still incomplete. Different theoretical
models have been proposed to explain the anomalous behav-
ior of water itself and hydrophobic interactions, which have
been recognized to be closely related. A straightforward ap-
proach relies on the application of molecular dynamics or
Monte Carlo simulation methods to models with more or less
realistic three-dimensional water geometryf3–7g. This ap-
proach is powerful, but has some limitations. First of all,
large computational effort is needed, and properties involv-
ing multiple derivatives of the free energyssuch as transfer
heat capacity, whose behavior is a fingerprint of hydropho-
bicityd cannot be determined easily. Moreover, the amount of
different interactions and geometric parameters included in
the model makes it difficult to find out relevant physical
mechanisms which determine observable properties.

A complementary approach involves investigation of sim-
plified modelsf8–10g, with fewer parameters, geometric de-
tails, and degrees of freedom. Such models should better
allow to trace connections between microscopic structure
and observed properties, while the latter can be usually ana-
lyzed in full detail, and in a large range of thermodynamic
conditions, with relatively small computational effort. One of
these attempts is based on the application of scaled-particle

theory f11g to hydrophobic hydrationf12,13g. These studies
suggest that the hydrophobic effect results mostly from the
small size of water molecules, and not from water structuring
by the solute. A recent and interesting descendant of scaled-
particle theory is the information theory approach by Pratt
and co-workersf14,15g, based on previous knowledge of wa-
ter properties, such as the pair correlation function, obtain-
able either by experiments or by simulations. The latter ap-
proach suggests that water structuring induced by the solute,
though existing, may be scarcely relevant for a description of
the hydrophobic effect. The simplified molecular thermody-
namic theory of Ref.f9g is essentially in agreement with this
conclusion. On the contrary, different theories stress that the
large positive heat capacity variation, observed upon inser-
tion of apolar solutes into water, can only arise from a coop-
erative phenomenon, that is from induced ordering of water
molecules, so that a theory of the hydrophobic effect should
be based on a description of this phenomenon. It can be
observed that, at room temperature, hydration of apolar sol-
utes is energetically favorable but sufficiently unfavorable
entropically, with a resulting positive transfer free energy. A
simplified way to reproduce this effect is for instance the
one-dimensional lattice model by Kolomeisky and Widom
f16g, extended also to two and three dimensionsf17g. In that
case, entropy penalty is achieved by lowering the large num-
ber of possible orientations of a water molecule, if it has to
accommodate a neighboring hydrophobic solute. Another
possibility is to give water molecules a geometric structure,
as in the two-dimensional Mercedes BenzsMBd model, first
introduced by Ben-Naim in 1971f18g. In the latter model,
water molecules possess three equivalent bonding arms ar-
ranged as in the Mercedes logo, and a geometric constraint
sarm alignmentd is required for bond formation. An MB
model has been investigated quite recently by Dill and co-
workers by means of several different methods, such as con-
stant pressure Monte Carlo simulationsf19,20g, entropy ex-
pansion f21g, and integral equation theoryf22–24g. A
coherent picture of the hydrophobic effect phenomenology
has been worked out, allowing to obtain a microscopic view
of several anomalous properties of water both as a pure sub-
stance and as a solvent. The latter studies follow the previ-
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ously mentioned idea of simplified models, that nevertheless
are based on well defined microscopic interactions, that is,
on an energy function, without previous knowledge of water
properties. One important reason to do so is the need of
modeling water in a computationally convenient way, in or-
der to investigations on complex systems such as biomol-
ecules, for which water plays a key role.

According to the same idea, we have recently investigated
f25g a lattice-fluid model of MB type on astwo-dimensionald
triangular lattice, with the aim of reproducing qualitatively
the thermodynamic anomalies of pure water. Of course, the
lattice allows important simplifications, so that a sufficiently
accurate modeling of water on a lattice may be quite an
interesting issue. Our model Hamiltonian includes Van der
Waals interaction and hydrogen bonding, when two nearest
neighbor MB water molecules point an arm to each other.
Bonds can be weakened by the presence of a third competing
molecule, close to the formed bond, to mimic the fact that, if
water molecules are too close to one another, hydrogen
bonds may be perturbed or broken. As far as bonding prop-
erties are concerned, the model is equivalent to an early
model proposed by Bell and Lavisf26g, but the weakening
criterion is different, that is, equivalent to the one employed
in quite a recent investigation by Patrykiejew and co-workers
f27,28g. Nevertheless, in the latter analysis the possibility of
nonbonding orientations for water molecules is neglected,
and resemblance with real water behavior is poor. In Ref.
f25g we observed that, introducing such additional orienta-
tions, which account for directionality of hydrogen bonds,
the lattice model describes several anomalous properties of
pure water in a qualitatively correct way. Here we extend the
model to the case of an aqueous solution, working out sol-
vation thermodynamics for an inertsapolard solute. The
analysis is also extended to transfer properties of water in its
own pure liquid. Our purpose is to verify whether this simple
model, which nevertheless accounts for the competition be-
tween Van der Waals interactions and hydrogen bonding in
almost the same way as the off-lattice MB model, may be
able to reproduce at least the main features of hydrophobic-
ity. In particular, we also investigate how the model de-
scribes the solvation process at a microscopic level, by com-
paring the average number of hydrogen bonds formed by
water moleculesshydrogen bond coordinationd in the bulk or
in the hydration shell. We shall carry out the analysis by
means of a generalized first-order approximation on a tri-
angle cluster, which has been verified to be quite accurate for
the pure water modelf25g.

The paper is organized as follows. In Sec. II we define the
model and recall the first-order approximation. In Sec. III we
introduce the thermodynamic quantities used to characterize
the solvation process, and compute them in the framework of
the model. In particular, we analyze transfer quantities for an
inert molecule, comparing them to the case in which hydro-
gen bonding interaction is “turned off.” Model predictions
about solvation of water in its own pure liquid are also re-
ported. In Sec. IV we investigate hydrogen bond coordina-
tion, drawing a comparison with the results of the off-lattice
MB model. Section V contains some concluding remarks.

II. THE MODEL AND THE FIRST ORDER
APPROXIMATION

The model is defined on a two dimensional triangular lat-
tice. A lattice site can be empty or occupied by molecules of
two different chemical species, waterswd or solutessd. A
water molecule has three equivalent bonding arms, separated
by 2p /3 angles, whereas a solute molecule is assumed to
have no internal structure. Two nearest-neighborsNNd mol-
ecules of speciesx ,y swith x ,y=w ,sd interact with an at-
tractive energy −exy,0, representing ordinary Van der Waals
forces. Moreover, if two arms of two NN water molecules
point to each other, an energy term −h,0 is added, to mimic
the formation of a hydrogensHd bond. Due to the lattice
structure, a water molecule can form 3 bonds at most, and
has only 2 bonding orientations, when its arms are aligned
with the lattice. We also assume thatw nonbonding configu-
rations exist, wherew is a model parameter, related to the H
bond breaking entropy. The H bond is weakened by an en-
ergy term cxh /2 scxP f0,1gd when a third molecule ofx
species is on a site near a formed bond. In the triangular
lattice there are 2 such weakening sites per bond, so that,
when both are occupied byx molecules, the H bond contrib-
utes an energy −s1−cxdh. The resulting water-solute interac-
tion has two components: The nonorientational Van der
Waals term −ews and the weakening termcsh /2. The latter,
which is an effective 3 body interaction, can be viewed as a
perturbation effect of the solute on a H bond between two
water molecules.

Let us write the model Hamiltonian. In order to introduce
the first order approximation, it is convenient to express it as
a sum over elementary triangles:

H =
1

2 o
kr,r8,r9l

Hirir8ir9
, s1d

where Hi jk is a contribution which will be referred to as
triangle Hamiltonian, andi r , i r8 , i r9 label site configurations
for the 3 verticesr ,r8 ,r9, respectively. Possible site configu-
rations aressee Table Id: “empty” si =0d, “bonding water”
ssite occupied by a water molecule in one of the 2 orienta-
tions which can form bonds:i =1,2d, “nonbonding water”
ssite occupied by a water molecule in one of thew orienta-
tions which cannot form bonds:i =3d, “solute” ssite occupied
by a solute molecule:i =4d. Even if all configurations have
unit multiplicity, excepti =3, it is convenient to introduce a

TABLE I. Possible site configurations, with corresponding la-
belssid, multiplicities swid, and occupation numbers for watersnw,id
and solutesns,id.
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generic multiplicity parameterwi, defined as in Table I. The
triangle Hamiltonian can be written as

Hi jk = Hijk + Hjki + Hkij , s2d

where

Hijk = − exynx,iny,j − hhijs1 − cxnx,kd, s3d

nx,i is an occupation variable for thex species, defined as in
Table I, whilehij =1 if the pair configurationsi , jd forms a H
bond, andhij =0 otherwise. Conventionally, repeatedx andy
indices are summed over their possible valuesw ,s. Let us
notice that triangle vertices are set on three triangular sublat-
tices, sayA,B,C, and i , j ,k are assumed to denote configu-
rations of sites placed onA,B,C sublattices respectively. As-
suming also thatA,B,C are ordered counterclockwise on
up-pointing trianglesswhence clockwise on down-pointing
trianglesd, we can definehij =1 if i =1 and j =2 andhij =0
otherwise. Let us also notice that both Van der Waals
s−exynx,iny,jd and H bond energiess−hhijd, that are 2-body
terms, are split between two triangles, whence the 1/2 pref-
actor in Eq.s1d. On the contrary the 3-body weakening terms
shhijcxnx,k/2d are associated each one to a given triangle, and
the 1/2 factor is absorbed in the prefactor. Let us denote the
triangle configuration probability bypijk, and assume that the
probability distribution is equal for every trianglesno dis-
tinction between up- or down-pointing trianglesd. Taking into
account that there are 2 triangles per site, we can write the
following expression for the internal energy per site of an
infinite lattice

u = o
i=0

4

o
j=0

4

o
k=0

4

wiwjwkpijkHi jk . s4d

The multiplicity for the triangle configurationsi , j ,kd is
given bywiwjwk, wherewi is the previously mentioned mul-
tiplicity parameter.

The details of the finite temperature analysis of the model,
by a generalized first order approximation on a triangle clus-
ter, follow the previous paperf25g. Not being interested in
symmetry broken phasessiced, we introduce a homogeneity
condition since the beginning, after which generalization is
trivial. The grand-canonical free energy per sitev=u
−mxrx−Ts smx andrx being respectively the chemical poten-
tial and the density, or site occupation probability, for thex
species,T and s being respectively the temperature and the
entropy per sited, can be written as a functional in the triangle
probability distribution as

v = o
i=0

4

o
j=0

4

o
k=0

4

wiwjwkpijksH̃i jk + T ln pijkd − 2To
i=0

4

wipi ln pi ,

s5d

where T is expressed in energy unitsswhence entropy in
natural unitsd. It is noteworthy that the only variational pa-
rameter inv is the triangle probability distribution, that is the
125 variableshpijkj, becausepi sthe site probabilityd can be
expressed as a marginal. According to the homogeneity hy-
pothesis, we can use the symmetrized expression

pi = o
j=0

4

o
k=0

4

wjwk
pijk + pjki + pkij

3
. s6d

The latter turns out to be convenient, in that it gives rise to
iterativesfixed pointd equations which preserve homogeneity.
The energy part in Eq.s5d is given by the modified Hamil-

tonianH̃i jk, defined as

H̃i jk = Hi jk − mx
nx,i + nx,j + nx,k

3
. s7d

The minimization ofv with respect tohpijkj, with the nor-
malization constraint, yields the equations

pijk = j−1e−H̃i jk/Tspipjpkd2/3, s8d

wherej is a normalization constant. Such equations can be
solved numerically by simple iterationsnatural iteration
methodf29gd. As a result, we obtain the triangle probability
values at equilibrium, from which one can compute the ther-
mal average of every observable. The substitution into Eqs.
s4d ands5d gives respectively the equilibrium internal energy
and free energy, and, by the way, it is possible to show that

v = − T ln j. s9d

III. SOLVATION THERMODYNAMICS

Let us first introduce the thermodynamic quantities, gen-
erally used to describe solvation from a macroscopic point of
view, which we shall evaluate for our model in the following.
The physical process we are interested in is the transfer of a
componentsx=w ,sd into a water-solute mixture, with solute
density tending to zero. According to the Ben-Naim standard
f30g, this process is well characterized by variation of the
pseudochemical potentialmx

* , related to the ordinary chemi-
cal potentialmx of the given component by

mx = mx
* + T log rx. s10d

Let us notice that, in the latter term on the right hand side,
the momentum partition function is missing, due to the fact
that we are dealing with a lattice modelf30g. The solvation
free energy per moleculeDgx

* is defined as the difference
between pseudochemical potential values of a moleculex in
the ideal gas phasesgd and in the liquid phasesld. For prac-
tical purposes, the differences between ideal and real gas can
be generally neglectedf30g. For a molecule of speciesx we
then have

Dgx
* = mx

* sld − mx
* sgd, s11d

wheremx
* sld and mx

* sgd are pseudochemical potentials ofx in
the liquid and gas phases, respectively. Now, if liquid and
gas phase coexist in equilibrium, as usual in experiments, the
ordinary chemical potentials ofx in both phases must be
equal, and by simple algebra we obtain

HYDRATION OF AN APOLAR SOLUTE IN A TWO-… PHYSICAL REVIEW E 71, 051502s2005d

051502-3



Dgx
* = − T ln

rx
sld

rx
sgd , s12d

whererx
sld andrx

sgd are respectively thex species densities in
the liquid and in the gas. Derived quantities, of interest in
experiments, are the solvation entropy

Dsx
* = U −

]Dgx
*

]T
U

P
, s13d

the solvation enthalpy

Dhx
* = Dgx

* + TDsx
* , s14d

and the solvation heat capacity

DcPx
* = U ]Dhx

*

]T
U

P
. s15d

Let us notice that, in principle, we should distinguish be-
tween a constant pressure derivativesas stated by definitiond
and a temperature derivative taken along the liquid-vapor
equilibrium curve. In particular, we could not even use Eq.
s12d, because we would move out of the equilibrium curve,
at which the ordinary chemical potentials are equal. Never-
theless, we have computed numerically both kinds of deriva-
tives, and verified that the difference between the two sets of
results cannot even be appreciated at the scale of the graphs
reported in the following. This point is in agreement with the
experimental observations of Ref.f30g. Let us notice that the
difference increases upon approaching the critical point, but
this region is generally out of the experimentally interesting
range, so we do not report the corresponding results.

Let us start studying solvation of an inert molecule in
water. We set water parameters as follows:h /eww=3, cw
=0.8, andw=20. As shown in our previous analysisf25g,
this choice corresponds to a waterlike behavior, with a
liquid-vapor critical point atT/eww<1.18, and with a tem-
perature of maximum density for the liquid aroundT/eww
<0.67 at low pressure. Solvation thermodynamics concepts
introduced above are independent of density of components
in the mixture. We choose to let solute density assume very
low values with respect to water densitysdilute solution
limit d, in order to compare with experiments. The “inert”
nature of the solute is described, in the model framework, by
setting to zero the solute-solutesessd and water-solutesewsd
Van der Waals interaction energies. At the moment, we also
set the weakening parametercs to zero, assuming that the
ideally inert solute does not weaken H bonds in its neighbor-
hood. The effect of nonzero values for this parameter, which
may describe for instance a volume interaction, resulting in a
perturbation of the geometrysand hence of the energyd of H
bonds, will be taken into account later. The temperature
trends of the free energy, entropy, and enthalpy of transfer
are given in Fig. 1sad; the transfer heat capacity in Fig. 1scd.
In order to compare with experimental dataf30g, all quanti-
ties are evaluated at liquid-vapor coexistence. For the per-
fectly inert solute, we have verified that concentration does
not affect the results at all. To represent roughly the experi-
mental temperature rangesbetween 0 °C and 300 °Cd we
report model results betweenT/eww=0.65 sjust below the

temperature of maximum density for pure liquid waterd and
T/eww=0.90sabout half way between the previous tempera-
ture and the critical temperatured. Remarkably, it turns out
that the model, despite its simplicity, displays the defining
features of the hydrophobic effect: the solvation free energy
is positive and large, while the solvation entropy is negative
at low temperatures and becomes positive upon increasing
temperature; the heat capacity is positive and large, and also
the decreasing trend with temperature is essentially repro-
duced. The increasing trend at high temperature is related to
the the fact that we are approaching the liquid-vapor critical
point. Negative solvation entropy at lowsroomd temperature
is a clear indication that solute insertion into the mixture
orders the system. The corresponding positivesunfavorabled
contribution to free energy compensates a negativesfavor-
abled enthalpic contribution, giving rise to a positive solva-
tion free energy. At higher temperature, enthalpic and en-
tropic contributions change sign, but they still have the same
compensating trend. As observed in experiments, the model
predicts two different temperaturesTH and TS at which the
transfer enthalpy and entropy vanish, respectivelyfsee Fig.
1sbdg. This behavior is to be ascribed to the thermodynamics
of H bonding and, in order to rationalize this fact in the
model framework, let us also analyze transfer quantities for
the caseh=0, i.e., turning off H bond interactionsfsee Figs.
1sad and 1scdg. As expected, the results are similar in the high
temperature regime, where there is a high probability that
hydrogen bonds are broken by thermal fluctuations, whereas
they change more and more dramatically upon decreasing
temperature, and in particular the regions of negative transfer
entropy and enthalpy completely disappear. These facts con-
firm that H bonding is the key element for system ordering,
upon insertion of an inert molecule. Accordingly, also the
divergentlike trend of the heat capacity upon decreasing tem-
peraturesrelated to the fact that the liquid phase is approach-
ing a stability limit f25gd is suppressed. The process is now

FIG. 1. sad Solvation energiessE/ewwd vs temperaturesT/ewwd
for an ideal inert molecule in water at liquid-vapor coexistence:E
=Dgs

* ssolid lined, E=TDss
* sdashed lined, and E=Dhs

* sdashed-
dotted lined. sbd Corresponding experimental data for transfer of
argon into waterf30g. scd Solvation heat capacitysDcP

* d vs tempera-
turesT/ewwd for an ideal inert molecule in water.sdd Corresponding
experimental data for transfer of argon into waterf30g. Thin lines in
sad andscd denote solvation quantities in nonbonding watersh=0d.
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completely dominated by the transfer enthalpy, with a large
and positive transfer free energy, and a positive transfer en-
tropy. The transfer quantities behave qualitatively as those
observed in solvation experiments of noble gas molecules in
ordinary liquids f30,31g, and are relatively independent of
temperature. In fact, withh=0, a water molecule can be
viewed as a nonpolar molecule with Van der Waals interac-
tion energyeww.

Let us now consider also the solvation of water in its own
pure liquid. The corresponding transfer energies obtained by
the model are displayed in Fig. 2sad, where we have reduced
the temperature interval, in order to compare with available
experimental resultsf30g, reported in Fig. 2sbd. In contrast to
the inert molecule case, here the absolute values of solvation
free energy and entropy are considerably lower and the en-
thalpy, rather than the entropy, dominates the solvation pro-
cess, and all quantities are relatively independent of tempera-
ture. These features characterize a regular transfer process,
like the solvation of an ordinary fluid molecule from a gas
phase into its pure liquid phase. In this case, upon removing
H bond interactionsfthin lines in Fig. 2sadg, very little
changes are observed in the solvation energies, except at
very low temperature, where we are approaching the stability
limit for liquid water f25g. Let us discuss two issues about
these results. First, the fact that so little changes are caused
by turning on or off H bonds can be rationalized on the basis
of the microscopic model interactions. The insertion of a
water molecule into pure liquid water should imply in prin-
ciple the formation of new H bonds, but the model is such
that insertion of a new water molecule also weakens other H
bonds in its neighborhood, and the two effects nearly com-
pensate each other. Second, let us notice that solvation en-
thalpy decreases upon increasing temperature, that is, the
solvation heat capacity is negative, in contrast with experi-
ments. We do not have an explanation for this fact, but we
can observe that an analogous effect is observed when the
model is reduced to describe a regular solvation process, that
is when H bonds are turned off. This suggest that there is
probably a limitation of the lattice description, that anyway
has nothing to do with the peculiarities of water. The effect is
quantitatively small, so that it is hidden by other large en-
thalpic and entropic effects observed in the case of hydro-
phobic solvation.

IV. HYDROGEN BOND COORDINATION

So far, we have always considered an ideal, perfectly inert
solute, setting to zero all interactions with watersews ,csd and
with itself sessd. Now we investigate the role of thecs pa-
rameter, representing the fact that also a solute molecule may
have a weakening effect on H bonds in its neighborhood. Let
us recall that, in our model, the presence of too many water
molecules close to one another weakens the H bond strength,
through thecw parameter, to mimic the fact that too low
average distance is unfavorable for H bonding. On the con-
trary, a differentslowerd weakening parameter for the solute,
might represent a different perturbation of H bonds, related
for instance to excluded volume. Anyway, the solute weak-
ening parametercs is a way of tuning the degree of water
ordering induced by the solute.

In order to characterize this effect, together with the role
of cs, let us investigate H bond coordination, that is, the
average number of hydrogen bonds per molecule. In quite
recent papers, Dill and co-workersf19g suggested, on the
basis of their off-lattice MB model, that this parameter is the
appropriate one to rationalize the temperatureTS at which the
transfer entropy vanishes. In particular, they distinguished
between H bond coordination for molecules in bulk water
and in a hydration shell. We can evaluate analogous param-
eters also for our model, in the framework of the first order
approximation. Each water molecule can form bonds with
NN molecules only, therefore it is necessary to compute the
joint probability distributions of a given site with its 6 NNs
shexagon probability distributiond. According to the Husimi
lattice formulation of the first order approximation, it is easy
to see that only certain triangle correlations are taken into
account, as shown schematically in Fig. 3. Therefore,i0 be-
ing the central site configurations andi1. . .i6 the NNs con-
figurations, the hexagon probability distribution reads

pi0i1. . .i6
=

pi0i1i2
pi0i3i4

pi0i5i6

pi0
2 . s16d

We shall evaluate bond coordinations according to this fac-
torization, which, let us notice, is perfectly consistent with
our approximation schemef32g. Let us consider a water mol-
ecule in a bonding configuration, for examplei =1. It is not

FIG. 2. sad Solvation energiessE/ewwd vs temperaturesT/ewwd for a water molecule into pure liquid water at liquid-vapor coexistence:
E=Dgs

* ssolid lined, E=TDss
* sdashed lined, andE=Dhs

* sdashed-dotted lined. sbd Corresponding experimental dataf30g. Thin lines in sad
denote solvation energies for nonbonding watersh=0d.
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necessary to consider also the othersi =2d bonding configu-
ration, due to the fact that the liquid phase is isotropic,
whereas we do not take into account nonbonding configura-
tions si =3d, because in that case the probability of forming a
bond is zero. Bulk and shell coordinations can be written
respectively as

kqlB = o
q=1

3

qPquB, s17d

kqlS= o
q=1

3

qPquS, s18d

where PquB, or PquS respectively, is the probability that the
given molecule formsq bonds, given that its NN sites host
no solute moleculessbulk waterd or at least one solute mol-
eculeshydration shelld. Working in the infinite dilution limit,
the probability of configurations with more than one NN
solute is actually a small corrections over the probability of
having just one solute molecule. Making use of the Bayes
theorem, the bulk conditional probability can be rewritten as

PquB =
Pq,B

PB
, s19d

wherePq,B is the probability that the central molecule forms
q bonds,and that its NN sites host no solute molecules,
while PB is simply the probability that the NNs host no sol-
ute molecules. Making use also of the total probability theo-
rem, the shell conditional probability can be rewritten as

PquS=
Pq,S

PS
=

Pq − Pq,B

1 − PB
, s20d

where Pq is the total probability that the central molecule
forms q bonds.

We can now evaluate the required probabilities, making
use of the factorizations16d. First of all, it is easy to see that

Pq = S3

q
Dp12

qsp1 − p12d3−q

p1
3 , s21d

where

p1 = o
j=0

4

o
k=0

4

wjwkp1jk, s22d

p12 = o
k=0

4

wkp12k. s23d

In fact, the central molecule, in the giveni =1 configuration,
can form bonds along its 3 arms. Therefore,p12

q is the prob-
ability that a bond is formed alongq given arms, whilesp1

−p12d3−q is the probability that bond is not formed along the
remaining 3−q arms. The probability factorizes, because
arms lie on different triangles, which are uncorrelated, ac-
cording to Eq.s16d. The binomial coefficient accounts for
different choices ofq bonds along 3 arms, while the denomi-
nator is due to the fact thatPq, though not specified by the
notation, is a conditional probability, with respect to the pres-
ence of a central water molecule in thei =1 configuration.
The joint probabilityPq,B can be evaluated in similar way

Pq,B = S3

q
D p̃12

qsp̃1 − p̃12d3−q

p1
3 , s24d

where we have to assume that no solute molecule is present
in the neighborhood, that is

p̃1 = o
j=0

3

o
k=0

3

wjwkp1jk, s25d

p̃12 = o
k=0

3

wkp12k = p12 − p124. s26d

Finally, the probability that no solute molecule is in the
neighborhoodsbulk conditiond can be written as

PB =
p̃1

3

p1
3 . s27d

In the work by Dill and co-workersf19g, at low tempera-
tures, H bond coordination for shell waterkqlS is greater than
H bond coordination for bulk waterkqlB. Such a behavior is
reversed at high temperatures, where H bonds are preferably
formed by bulk water, and a “crossing temperature”Tq is
observed, at whichkqlS=kqlB. Such temperature turns out to
be approximately equal to the zero entropy temperatureTS
sat which Dss

* =0d, so that quite a general relationship be-
tween H bond coordination and transfer entropy is conjec-
tured. Let us analyze what happens in our model. First of all,
let us observe that the range of values of H bond coordina-
tion is generally much lower than the maximum value of 3 H
bonds, which can be formed by a single water moleculessee
Fig. 4d. Maybe this fact is a peculiarity of the lattice model,
in which H bonds can be formed just along given directions.
As far as temperature dependence is concerned, we can have
in principle four different behaviors, upon varying the weak-
ening parametercs. At low cs values, we havekqlS. kqlB at
all temperaturesfFig. 4sadg. Upon increasingcs, the differ-
ence between bulk and shell coordination is progressively
reduced and, for sufficiently largecs values, we can observe

FIG. 3. Site labels for the hexagon probability distribution.
Thick lines denote triangles for which correlations are taken into
account.
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a crossing temperatureTq, such thatkqlS. kqlB for T,Tq

andkqlS, kqlB for T.Tq fFig 4sbdg. This behavior is similar
to the one found by Dill and co-workers. Increasingcs fur-
ther, we can also observe a more complicated behavior, in
which a second crossing temperatureTq8,Tq appears, such
that the conditionkqlS, kqlB, previously observed at high
temperature, is restored forT,Tq8 fFig. 4scdg. Nevertheless,
the latter region is very close to the stability limit for the
liquid phase, which would be very difficult to reach in a real
system. Finally, for very highcs values, a fourth different
behavior is observed, in whichkqlS, kqlB at all tempera-
tures. All possible scenarios are summarized in Fig. 5, where
the crossing temperaturesTq,Tq8 are displayed as a function
of the weakening parametercs. As a comparison, in the same
figure, we have also reported the zero entropy temperature
TS. It can be easily observed that, while H bond coordination
is strongly dependent oncs, the transfer entropy turns out to
be a much more “robust” effect, and theTS temperature has
only a relatively slight dependence on the weakening param-
eter.

V. CONCLUSIONS

In this paper we have considered a two-dimensional wa-
terlike lattice model, which we had previously shown to re-
produce thermodynamic anomalies of pure water, and ex-

tended the model to describe aqueous solutions. Water
molecules are of the Mercedes Benz type, with three equiva-
lent bonding arms, while solute molecules have no internal
degrees of freedom. We have performed our calculations by
means of a generalized first-order approximation on a tri-
angle cluster, which requires small computational effort, and
had been shown to be quite accurate for the pure water
model. We have addressed the issue of dilute solutions of
inert sapolard solutes, that is, the hydrophobic effect, and we
have investigated thermodynamic equilibrium between liquid
and vapor, working out solvation quantities in this case. It
turns out that the model qualitatively reproduces peculiar
features that are believed to be the fingerprints of hydropho-
bicity. The solvation free energy is positivesunfavorable sol-
vationd, while entropy and enthalpy are negative at low tem-
peratures and positive at high temperatures. The solvation
heat capacity is large and decreases upon increasing tempera-
ture. The model results compare qualitatively well with ex-
perimental results about solvation of noble gases into water.

We have investigated the effect of H bonding, by compar-
ing the previously mentioned results with those obtained by
setting to zero the H bond energy. In this case, we have
obtained transfer quantities that approach the ones computed
with H bonds at high temperatures, but that largely deviates
from them upon decreasing temperature, that is, in the region
were H bonds begin to dominate. In particular, we have ob-
served that, while disaffinity between solute and solvent re-
mains sthe solvation free energy is still positived, such dis-
affinity is mainly of enthalpic nature. Both the enthalpy and
entropy of solvation remain positive at all temperatures, so
that also the typical strong temperature dependence, ob-
served on hydrophobic solvation, disappears.

In order to check the model, we have also investigated
solvation of water into water at liquid-vapor equilibrium, for
which experimental data are available. We have found quali-
tative agreement in the values of solvation free energy, en-
tropy and enthalpy, though there is some discrepancy in the
temperature dependence of enthalphy, which indicates a
negative solvation heat capacity, in disagreement with ex-
periments. Though not reporting details in the paper, we have
verified that this fact is neither to be related to the approxi-
mation of the ideal or real gas phase, nor with the tempera-
ture derivative approximation, mentioned in Sec. III. On the
contrary, we have observed that the same kind of discrepancy

FIG. 4. H bond coordination for a shell water moleculessolid
lined and a bulk water moleculesdashed lined vs temperature.sad
cs=0, sbd cs=0.37, andscd cs=0.405.

FIG. 5. Weakening parametercs vs crossing temperatureTq, at
which kqlS=kqlB sempty circles, solid lined and vs zero entropy
temperatureTS, at whichDss

* =0 sfilled circles, dashed lined.
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can be observed in the case of zero H bond energy, that is,
for an ordinarysIsingd lattice gas. Therefore, we suggest that
the discrepancy is to be related to an intrinsic limitation of
lattice modelling. The effect is relatively small, so that it is
completely invisible, when the dominant effect of H bonding
is turned on.

Finally, we have computed the average number of H
bonds formed by a single water moleculesH bond coordina-
tiond, both when the molecule is placed in the first hydration
shell of a solute moleculesshell coordinationd, and when it is
not sbulk coordinationd. According to Dill’s Mercedes Benz
model, these two parameters seem to be closely related to the
solvation entropy. In particular, negative solvation entropies
slow temperaturesd correspond to higher shell coordination,
while positive solvation entropies correspond to higher bulk
coordination. We have tried to verify whether the same effect
could be observed in our model. The answer is basically no,
but some interesting observations can be done. We have per-
formed the investigation upon varying the solute weakening

parameter, which, in our model, is a way of tuning the degree
of water ordering induced by the solute. We have observed
that such parameter strongly affects the behavior of H bond
coordination, and in particular the “crossing temperature”Tq,
at which shell and bulk coordinations become equal. On the
contrary, the zero entropy temperatureTS, which is actually
one of the striking features of the hydrophobic effect, is quite
“robust” and relatively independent of the weakening param-
eter. Two questions arise from the observed behavior. On the
one hand, we might suspect either that the lattice model is
definitely too simple to capture the microscopic physics of
the hydrophobic effect, or that the approximation level is
insufficient. On the other hand, the “robustness” of the zero
entropy effect might also suggest that the simple relationship
between the balance of bulk and shell H bonds and the zero
of transfer entropy, proposed by Dill and co-workers, could
be model-dependent, and ought to be verified more carefully.
We plan to investigate such issues in future works.
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